>百科大全> 列表
三角函数之歌出自哪里
时间:2025-05-12 23:07:32
答案

《三角函数之歌》是一首数学教育歌曲,其原作为美国大学生麦克·克林(Mike Kline)于2007年创作并发布在视频分享网站YouTube上的。这首歌通过优美的旋律和简单易懂的歌词,生动形象地介绍了正弦、余弦、正切等三角函数的定义和性质,成为了数学教育界的经典之作。此歌曲后来被翻译成多种语言,在全球范围内广受欢迎,被许多学校和教育机构作为数学教学的辅助资料。

三角函数主要公式
答案

1、二倍角公式

正弦形式:sin2α=2sinαcosα

正切形式:tan2α=2tanα/(1-tan^2(α))

余弦形式:cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

2、三倍角公式

sin3α=4sinα·sin(π/3+α)sin(π/3-α)

cos3α=4cosα·cos(π/3+α)cos(π/3-α)

tan3a=tana·tan(π/3+a)·tan(π/3-a)

3、四倍角公式

sin4A=-4*(cosA*sinA*(2*sinA^2-1))

cos4A=1+(-8*cosA^2+8*cosA^4)

tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)

2半角公式

1、正弦

sin(A/2)=√((1-cosA)/2)

sin(A/2)=-√((1-cosA)/2)

2、余弦

cos(A/2)=√((1+cosA)/2)

cos(A/2)=-√((1+cosA)/2)

3、正切

tan(A/2)=√((1-cosA)/((1+cosA))

tan(A/2)=-√((1-cosA)/((1+cosA))

3积化和差

sina*cosb=[sin(a+b)+sin(a-b)]/2

cosa*sinb=[sin(a+b)-sin(a-b)]/2

cosa*cosb=[cos(a+b)+cos(a-b)]/2

sina*sinb=[cos(a-b)-cos(a+b)]/2

4和差化积

sina+sinb=2sin[(a+b)/2]cos[(a-b)/2]

sina-sinb=2sin[(a-b)/2]cos[(a+b)/2]

cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2]

cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2]

5诱导公式

1、任意角α与-α的三角函数值之间的关系:

sin(-α)=-sinα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

2、设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

3、利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

4、设α为任意角,终边相同的角的同一三角函数的值相等:

sin(2kπ+α)=sinα(k∈Z)

cos(2kπ+α)=cosα(k∈Z)

tan(2kπ+α)=tanα(k∈Z)

cot(2kπ+α)=cotα(k∈Z)

5、利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:

sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

6、π/2±α及3π/2±α与α的三角函数值之间的关系:

sin(π/2+α)=cosα

cos(π/2+α)=-sinα

tan(π/2+α)=-cotα

cot(π/2+α)=-tanα

sin(π/2-α)=cosα

cos(π/2-α)=sinα

tan(π/2-α)=cotα

cot(π/2-α)=tanα

sin(3π/2+α)=-cosα

cos(3π/2+α)=sinα

tan(3π/2+α)=-cotα

cot(3π/2+α)=-tanα

sin(3π/2-α)=-cosα

cos(3π/2-α)=-sinα

tan(3π/2-α)=cotα

cot(3π/2-α)=tanα

(以上k∈Z)

三角函数之歌原名
答案

三角函数之歌的原名是“The Quadratic Formula Song”,这首歌是由美国数学教师和歌手Tom Lehrer创作的。这首歌以幽默诙谐方式,将数学中的二次公式(Quadratic Formula)编入歌词中,帮助学生记忆这个数学公式。歌曲中的旋律和歌词都十分有趣,使得学习数学的过程变得更加轻松和愉快。

推荐
© 2025 但是百科网